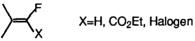
Received October 30, 1989, accepted March 19, 1990

PRELIMINARY NOTE

Preparation of Fluoroalkenes from Fluoroacetonitrile TIMOTHY B. PATRICK* and SOURENA NADJI Chemistry Department, Southern Illinois University Edwardsville, Illinois 62026 (USA)


SUMMARY

A fluorocyanophosphate prepared from fluoroacetronitrile at low temperat reacts with aromatic aldehydes in a modified Wittig procedure to give fluorocyanoalkenes in moderate yield.

Medicinal and biological science exerts an increasing demand for fluorinated organic material [1]. Biologically active molecules containing a vinylic fluorine atom are currently of special interest [2-5], but synthetic methods are limited for their preparation.

The main synthetic methods for the preparation of vinylic fluorides are based on the work of Burton and Thenappan [6] who have greatly explored the use of fluoro Wittig reagents, and on the work of Machleidt and Wessendorf [7] who developed a fluorophosphonate reagent from bromofluoroacetate. Schwartz and Lee developed an alternative method based on the fluorination of vinyl lithium compounds[8].

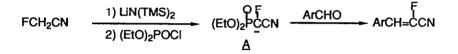
These combined methods furnish vinyl fluorides in which the accompanying terminal atom is a proton, halogen, or ester function.

In an attempt to further expand the use of Wittig reagents in the preparation of terminal vinylic fluorine compounds, we sought to develop a phosphonate reagent from fluoroacetonitrile which is readily available, and to easily manipulate the terminal nitrile function through conventional chemistry.

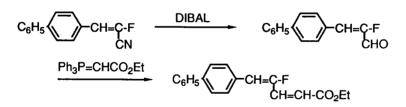
We found that reaction of the anion from fluoroacetonitrile at -78°C with diethylchlorophosphate followed by addition of an aromatic aldehyde produces fluorocyanoalkenes in 45-82% yield as shown in Table I. In a

0022-1139/90/\$3.50

© Elsevier Sequoia/Printed in The Netherlands


Starting Material	Product	ø ¹⁹ F (J _{H,F}) ^a		Z/E ^b	Yieid ^c
		Z	E		%
сн₃с→СНО	F_CN	-50.1 (40)	-51.1 (20)	0.5/1	46
CH3QCHO OCHO OCHO	CH ₃ O ^{-C} F ₂ CN	-45.2 (40)	-46.4 (21)	4/1	45
сн₃о	F_CN	49.1 (41)	-50.2 (20)	1/1	52
		-44.3 (37)	-41.0 (26)	1.6/1	62
PHCCHO	F CN	-46.0 (44)	-46.8 (20)	3/1	82
сн ₃ СНО	F CN CH3	-47.8 (43)	-48.4 (20)	3/1	51
NO2 CHO	F_CN	-39.8 (37)	-39.3 (20)	2/1	45

- Chemical shifts are reported upfield from trifluoroacetic acid
 (\$\$0.0 ppm\$). Coupling constants are in Hertz. F and H are trans in the Z isomer.
- $^{\rm b}$ $\,$ Isomer ratios are determined from F NMR peak integration.
- ^c Yields are for pure products isolated by flash chromatography.


148

typical procedure $LiN(TMS)_2$ was prepared from 2.2 mmol of $HN(TMS)_2$ and 2.2 mmol of n-BuLi in hexane at -78°C. After 5 mm a mixture of arylaldehyde (2 mmol) and diethylchlorophosphate (2 mmol) in 2 ml of dry THF was added rapidly. The mixture was allowed to come to room temperature during 1 hour and then heated at reflux for 30 mm. The product was isolated after extraction (EtOAc) and washing (NaCl solution) followed by flash chromatography.

The reaction presumably proceeds through intermediate <u>A</u> in the phosphonate modification of the Wittig reaction. The intermediate <u>A</u> however could not be detected and did not react with aliphatic aldehydes. Instead the aliphatic aldehydes produced complex mixtures from aldol-type reactions. Unsuccessful aliphatic aldehydes were: phenylacetaldehyde, phenylproponaldehyde, isobutylaldehyde, cyclohexancarboxaldehyde.

The cyano function of the fluorocyano alkene from 4-formylbiphenyl was reduced to the aldehyde and further condensed in a Wittig reaction to form the fluorodiene as shown below. Aldehyde ¹⁹F NMR (CDCl₃ vs TFA) - δ -39.2, -39.4, -39.6, -39.9 (doublet of doublets). Fluorodiene ¹⁹F NMR δ -41 -42.2, -42.5 (doublet of doublets). The conversions serve to indicate the synthetic utility possible with the fluorocyanoalkenes.

This study was funded by the Petroleum Research Fund, administered by the American Chemical Society.

- R. Filler and Y. Kobayashi, <u>Biomedical Aspects of Fluorine Chemistry</u> Elsevier, Amsterdam, 1982; R. Filler (ed.); <u>Biochemistry Involving</u> Carbon-Fluorine Bonds: ACS Symposium Series 28, American Chemical Society, Washington, DC 1982.
- 2 J.T. Welch, <u>Tetrahedron</u>, <u>43</u> (1987) 3123.

- 150
- 3 A.E. Asato, H. Matsumoto, M. Denny and R.S.H. Liu, <u>J. Am. Chem. Soc.</u>, <u>100</u> (1978) 5957.
- 4 S.W. Djuric, R.B. Garland, L.N. Nysted, R. Pappo, G. Plume and L. Swenton, J. Org. Chem., 52 (1987) 9728.
- 5 M.A. Findeis and G.M. Whitesides, J. Org. Chem., 52 (1987) 2838.
- 6 D.J. Burton and A. Thenappan, <u>Tetrahedron Lett.</u>, <u>30</u> (1989) 3641 and references cited therein.
- 7 H. Machleidt and R. Wessendorf, <u>Annalen, 679</u> (1964) 20; H. Machleidt and G. Strehlke, <u>Ibid.</u>, <u>681</u> (1965) 21.
- 8 S.H. Lee and J. Schwartz, <u>J. Am. Chem. Soc.</u>, <u>108</u> (1986) 2445.